Перевод: со всех языков на все языки

со всех языков на все языки

Principal Director of Scientific Research

  • 1 Principal Director of Scientific Research

    1. начальник отдела научных исследований
    2. Зам. директора по науке

     

    Зам. директора по науке
    (в научно-исследовательских учреждениях)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    начальник отдела научных исследований
    (в конструкторских бюро, на производстве)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > Principal Director of Scientific Research

  • 2 director

    начальник (управления, службы, отдела) ; руководитель; директор; ( центральный) прибор управления огнем; прибор управления артиллерийским зенитным огнем, ПУАЗО; целеуказатель; оператор наведения; пункт [самолет, корабль] наведения; ретранслятор; буссоль

    Assistant director, Review and Analysis — помощник начальника управления по проверке и анализу (контрактов) (МО)

    Deputy CIA director, Essential Elements of Information — заместитель директора ЦРУ по постановке основных задач сбора разведывательной информации

    Deputy director of Defense Research and Engineering for Administration, Evaluation and Management — заместитель начальника управления НИОКР МО по административным вопросам, вопросам оценки и управления

    Deputy director, Contract Administration Services — заместитель начальника службы по контролю за исполнением контрактов (МО)

    Deputy director, Strategic and Naval Warfare Systems — заместитель начальника управления по стратегическим и морским системам оружия (МО)

    Deputy director, Tactical Air and Land Warfare Systems — заместитель начальника управления по тактическим авиационным и наземным системам оружия (МО)

    Deputy director, Test Facilities and Resources — заместитель начальника управления по испытательному оборудованию и ресурсам (МО)

    director EW and C3 Countermeasures — начальник управления РЭБ и мер противодействия системам руководства, управления и связи (МО)

    director for C3 Policy — начальник управления разработки программ руководства, управления и связи (МО)

    director for Operations, Joint Staff — начальник оперативного управления объединенного штаба (КНШ)

    director for Plans and Policy, Joint Staff — начальник управления планирования и строительства ВС объединенного штаба;

    director of Administrative Services, Joint Staff — начальник административного управления объединенного штаба

    director of Civilian Marksmanship, National Board for the Promotion of Rifle Practice — начальник управления стрелковой подготовки гражданского персонала Национального комитета содействия развитию стрелкового спорта (СВ)

    director of Manning (Army)Бр. начальник управления комплектования (СВ)

    director of Research, Development, Test and Evaluation — начальник управления НИОКР, испытаний и оценок

    director, Acquisition and Support Planning — начальник управления закупок (военной техники) и планирования МТО (МО)

    director, Administrative Support Group — начальник группы административного обеспечения (СВ)

    director, Admiralty Marine Technology Establishment — Бр. начальник управления разработки боевой техники МП

    director, Admiralty Surface Weapons Establishment — Бр. начальник управления разработки систем надводного оружия ВМС

    director, African Region — начальник управления стран Африки (МО)

    director, Air National Guard — директор штаба НГ ВВС

    director, Air Vehicles Technology — начальник управления разработки авиационных транспортных систем (МО)

    director, Air Warfare — начальник управления авиационных систем оружия (МО)

    director, Army Air Corps — Бр. начальник управления армейской авиации СВ

    director, Army Aviation — начальник управления армейской авиации

    director, Army Council of Review Boards — председатель совета СВ по контролю за деятельностью апелляционных комиссий

    director, Army Medical Services — Бр. начальник медицинской службы СВ

    director, Army National Guard — директор штаба НГ СВ

    director, Army Programs — начальник управления разработки программ СВ

    director, C3 Resources — начальник управления разработки систем руководства, управления и связи (МО)

    director, Chemical Defence Establishment — Бр. директор НИЦ средств химической защиты

    director, Civil Affairs — начальник управления по связям с гражданской администрацией и населением

    director, Civilian Employees Security Program — начальник службы контрразведывательной проверки гражданского персонала (СВ)

    director, Combat Support — начальник управления боевого обеспечения (МО)

    director, Communications Systems — начальник управления систем связи (МО)

    director, Contracts and Systems Acquisition — начальник управления заключения контрактов и закупок систем оружия и военной техники (МО)

    director, Coordination and Analysis — начальник управления координации и анализа

    director, Counterintelligence and Investigative Programs — начальник управления программ контрразведки и специальных расследований (МО)

    director, Cruise Missile Systems — начальник управления систем КР (МО)

    director, Defence Operational Analysis Establishment — Бр. начальник военнонаучного управления МО

    director, Defense Research and Engineering — начальник управления НИОКР МО

    director, Defense Sciences — начальник научно-исследовательского управления МО

    director, Defense Supply Service-Washington — начальник службы снабжения зоны Вашингтона в МО

    director, Defense Telephone Service-Washington — начальник телефонной службы зоны Вашингтона в МО

    director, Defense Test and Evaluation — начальник управления МО по испытанию и оценке (оружия и военной техники)

    director, DIA — начальник разведывательного управления МО

    director, Directed Energy Programs — начальник управления программ использования направленной энергии (МО)

    director, Doctrine, Organization and Training — начальник управления разработки доктрин, вопросов организации и боевой подготовки

    director, DOD SALT Task Force — председатель рабочей группы МО по вопросам переговоров в рамках ОС В

    director, East Asia and Pacific Region — начальник управления стран Восточной Азии и Тихого океана (МО)

    director, Electronics and Physical Sciences — начальник управления по электронике и естественным наукам (МО)

    director, Engineering Technology — начальник управления проектно-конструкторских работ (МО)

    director, Environmental and Life Sciences — начальник управления экологических и биологических наук (МО)

    director, Equipment Applications — начальник управления по изучению применения техники (в войсках)

    director, Facilities Engineering — начальник инженерно-строительного управления

    director, Far East/Middle East/Southern Hemisphere Affairs — начальник управления стран Дальнего Востока, Среднего Востока и Южного полушария (МО)

    director, Federal Bureau of Investigation — директор ФБР

    director, Field Maintenance — начальник службы полевого технического обслуживания и ремонта

    director, Foreign Military Rights Affairs — начальник управления по делам прав иностранных государств в военной области (МО)

    director, General Purpose Forces Policy — начальник управления разработки вопросов строительства сил общего назначения

    director, Health Resources — начальник управления ресурсов здравоохранения

    director, Information Processing Technique — начальник управления систем обработки информации (МО)

    director, Information Security — начальник управления обеспечения секретности информации (МО)

    director, Information Systems — начальник управления АИС

    director, Installations — начальник управления строительства

    director, Intelligence Resources — начальник управления изучения ресурсов разведки (МО)

    director, Inter-American Region — начальник управления по межамериканским делам

    director, International Economic Affairs — начальник управления по международным экономическим делам (МО)

    director, International Military Staff — начальник международного объединенного штаба (НАТО)

    director, Joint Staff — начальник секретариата объединенного штаба (КНШ)

    director, Joint Tactical Communications (TRI-TAC) Program — начальник отдела работ по программе использования единой тактической системы связи (ТРИ-ТАК)

    director, Judge Advocate Division — начальник отдела военно-юридической службы (МП)

    director, Land Warfare — начальник управления наземных систем оружия (МО)

    director, Legislative Liaison — начальник отдела по связям с законодательными органами (ВВС)

    director, Legislative Reference Service — начальник справочной юридической службы (МО)

    director, Major Weapon Systems Acquisition — начальник управления закупок основных систем оружия (МО)

    director, Marine Corps Reserve — начальник отдела по вопросам резерва МП

    director, Materiel Acquisition Policy — начальник управления разработки планов закупок оружия и военной техники (МО)

    director, Materiel Requirements — начальник отдела определения потребностей в оружии и военной технике

    director, Medical Plans and Resources — начальник управления ресурсов и планов медицинского обеспечения (ВВС)

    director, Military Assistance Office — Бр. начальник управления по оказанию военной помощи иностранным государствам (СВ)

    director, Military Survey — Бр. начальник топографического управления (СВ)

    director, Military Technology — начальник управления военной технологии (МО)

    director, Military Vehicles and Engineering Establishment — Бр. начальник управления БМ и инженерной техники

    director, National Intelligence Systems — начальник управления национальных систем разведки (МО)

    director, NATO/European Affairs — начальник управления по делам НАТО и стран Европы (МО)

    director, Naval Laboratories — начальник управления научно-исследовательских лабораторий ВМС

    director, Near Eastern and South Asian Region — начальник управления стран Ближнего Востока и Южной Азии (МО)

    director, Negotiations Policy — начальник управления разработки планов ведения переговоров (МО)

    director, Net Assessment — начальник управления всесторонней оценки программ (МО)

    director, NSA — директор АНБ

    director, Offensive and Space Systems — начальник управления космических средств и систем наступательного оружия (МО)

    director, Office of Congressional Travel/Security Clearances — начальник отдела организации поездок членов Конгресса и оформления допуска к секретным материалам (МО)

    director, Office of Dependents Schools — начальник отдела по вопросам воспитания и образования детей военнослужащих (МО)

    director, Office of Research and Administration — начальник управления НИР и административного обеспечения (МО)

    director, Operations — начальник оперативного управления [отдела]

    director, Personnel and Employment Service-Washington — начальник отдела кадров для гражданских служащих зоны Вашингтона (СВ)

    director, Personnel Council — председатель совета по делам ЛС (ВВС)

    director, Personnel Plans — начальник управления планирования подготовки ЛС (ВВС)

    director, Personnel Programs — начальник управления разработки программ использования ЛС (ВВС)

    director, Planning and Health Policy Analysis — начальник управления планирования и развития здравоохранения (МО)

    director, Planning and Requirements Review — начальник управления планирования и анализа потребностей (МО)

    director, Planning — начальник управления планирования (МО)

    director, Plans and Programs — начальник управления разработки планов и программ

    director, Policy Research — начальник управления политических исследований (МО)

    director, Program Control and Administration — начальник управления по административным вопросам и контролю за выполнением программ

    director, Program Management — начальник управления по руководству разработкой программ (МО)

    director, R&D and Procurement — начальник отдела НИОКР и заготовок

    director, Religious Education — руководитель отделения [секции] религиозного образования (СВ)

    director, Resource Management Office — начальник отдела управления ресурсами (СВ)

    director, Royal Aircraft Establishment — Бр. директор НИЦ авиационной техники

    director, Royal Armament R&D Establishment — Бр. директор НИЦ вооружений

    director, Royal Armored Corps — Бр. начальник бронетанковых войск

    director, Royal Artillery — Бр. начальник артиллерийского управления

    director, Royal Signals and Radar Establishments — Бр. директор НИЦ средств связи и РЛ техники

    director, SALT/Arms Control Support Group — начальник группы обеспечения переговоров в рамках ОСВ по контролю над вооружениями

    director, Security Assistance Plans and Programs — начальник управления разработки планов и программ военной помощи иностранным государствам

    director, Security Plans and Programs — начальник управления разработки планов и программ обеспечения безопасности (МО)

    director, Space Activities Office — начальник управления космических программ (МО)

    director, Space and Building Management Service-Washington — начальник службы эксплуатации объектов зоны Вашингтона (СВ)

    director, Space Systems — начальник управления космических систем (ВВС)

    director, Special Projects — начальник управления специальных проектов (МО)

    director, Special Studies — начальник управления специальных НИР

    director, Special Weapons — начальник управления специальных видов оружия

    director, Strategic and Theater C2 Systems — начальник управления разработки систем руководства и управления ВС в стратегическом масштабе и на ТВД

    director, Strategic Forces Policy — начальник управления разработки вопросов развития стратегических сил

    director, Strategic Planning — начальник отдела стратегического планирования

    director, Strategic Plans — начальник отдела стратегического планирования

    director, Strategic Policy — начальник управления разработки стратегических проблем (МО)

    director, Strategic Technology — начальник управления разработки стратегических систем оружия (МО)

    director, Studies and Analyses Staff — начальник отдела исследований и анализа (СВ)

    director, Surveillance and Warning — начальник управления систем наблюдения и оповещения (МО)

    director, Tactical Intelligence Systems — начальник управления тактических систем разведки (МО)

    director, Tactical Technology — начальник управления разработки тактических систем оружия (МО)

    director, Technology and Arms Transfer Policy — начальник управления разработки основ передачи военной технологии и вооружений

    director, Technology Trade — начальник управления по торговым операциям в области технологии

    director, Territorial Army and Cadets — Бр. начальник управления территориальной армии и кадетских организаций

    director, Theater Nuclear Force Policy — начальник управления разработки программ развития ядерных сил на ТВД

    director, Underwater Weapons Projects — Бр. начальник отдела разработки проектов подводного оружия

    director, USAF Judiciary — начальник отдела судопроизводства ВВС США

    director, Washington Headquarters Services — начальник административноштабной службы зоны Вашингтона

    director, Weapons (Production) — Бр. начальник управления по производству систем оружия

    director, Women's RAF — Бр. начальник женской вспомогательной службы ВВС

    director, Women's Royal Naval Service — Бр. начальник женской вспомогательной службы ВМС

    Executive director, Industrial Security — начальник управления обеспечения сохранения военной тайны на промышленных предприятиях (МО)

    Executive director, Quality Assurance — начальник управления обеспечения качества (продукции МО)

    Executive director, Technical and Logistics Services — начальник управления служб МТО (МО)

    Managing director, Royal Ordnance Factories — Бр. начальник управления военных заводов

    Principal director Office of the Deputy Under-Secretary, Policy Planning — начальник управления [первый помощник заместителя МО] по планированию военно-политических программ

    Staff director, Installation Services and Environmental Protection — начальник управления обслуживания объектов и защиты окружающей среды (МО)

    Staff director, Management Review — начальник управления анализа организационных проблем (МО)

    Staff director, Small and Disadvantaged Business Utilization — начальник управления по связям с мелкими и льготными предприятиями (МО)

    Vice director, Management and Operations Defense Intelligence Agency — первый заместитель начальника разведывательного управления МО по вопросам руководства операциями

    — fire control director

    English-Russian military dictionary > director

  • 3 Зам. директора по науке

    1. Principal Director of Scientific Research
    2. PDSR

     

    Зам. директора по науке
    (в научно-исследовательских учреждениях)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > Зам. директора по науке

  • 4 начальник отдела научных исследований

    1. Principal Director of Scientific Research
    2. PDSR

     

    начальник отдела научных исследований
    (в конструкторских бюро, на производстве)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > начальник отдела научных исследований

  • 5 PDSR

    1. начальник отдела научных исследований
    2. Зам. директора по науке

     

    Зам. директора по науке
    (в научно-исследовательских учреждениях)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    начальник отдела научных исследований
    (в конструкторских бюро, на производстве)
    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > PDSR

  • 6 Kompfner, Rudolph

    [br]
    b. 16 May 1909 Vienna, Austria
    d. 3 December 1977 Stanford, California, USA
    [br]
    Austrian (naturalized English in 1949, American in 1957) electrical engineer primarily known for his invention of the travelling-wave tube.
    [br]
    Kompfner obtained a degree in engineering from the Vienna Technische Hochschule in 1931 and qualified as a Diplom-Ingenieur in Architecture two years later. The following year, with a worsening political situation in Austria, he moved to England and became an architectural apprentice. In 1936 he became Managing Director of a building firm owned by a relative, but at the same time he was avidly studying physics and electronics. His first patent, for a television pick-up device, was filed in 1935 and granted in 1937, but was not in fact taken up. In June 1940 he was interned on the Isle of Man, but as a result of a paper previously sent by him to the Editor of Wireless Engineer he was released the following December and sent to join the group at Birmingham University working on centimetric radar. There he worked on klystrons, with little success, but as a result of the experience gained he eventually invented the travelling-wave tube (TWT), which was based on a helical transmission line. After disbandment of the Birmingham team, in 1946 Kompfner moved to the Clarendon Laboratory at Oxford and in 1947 he became a British subject. At the Clarendon Laboratory he met J.R. Pierce of Bell Laboratories, who worked out the theory of operation of the TWT. After gaining his DPhil at Oxford in 1951, Kompfner accepted a post as Principal Scientific Officer at Signals Electronic Research Laboratories, Baldock, but very soon after that he was invited by Pierce to work at Bell on microwave tubes. There, in 1952, he invented the backward-wave oscillator (BWO). He was appointed Director of Electronics Research in 1955 and Director of Communications Research in 1962, having become a US citizen in 1957. In 1958, with Pierce, he designed Echo 1, the first (passive) satellite, which was launched in August 1960. He was also involved with the development of Telstar, the first active communications satellite, which was launched in 1962. Following his retirement from Bell in 1973, he continued to pursue research, alternately at Stanford, California, and Oxford, England.
    [br]
    Principal Honours and Distinctions
    Physical Society Duddell Medal 1955. Franklin Institute Stuart Ballantine Medal 1960. Institute of Electrical and Electronics Engineers David Sarnoff Award 1960. Member of the National Academy of Engineering 1966. Member of the National Academy of Science 1968. Institute of Electrical and Electronics Engineers Medal of Honour 1973. City of Philadelphia John Scott Award 1974. Roentgen Society Silvanus Thompson Medal 1974. President's National medal of Science 1974. Honorary doctorates Vienna 1965, Oxford 1969.
    Bibliography
    1944, "Velocity modulated beams", Wireless Engineer 17:262.
    1942, "Transit time phenomena in electronic tubes", Wireless Engineer 19:3. 1942, "Velocity modulating grids", Wireless Engineer 19:158.
    1946, "The travelling-wave tube", Wireless Engineer 42:369.
    1964, The Invention of the TWT, San Francisco: San Francisco Press.
    Further Reading
    J.R.Pierce, 1992, "History of the microwave tube art", Proceedings of the Institute of Radio Engineers: 980.
    KF

    Biographical history of technology > Kompfner, Rudolph

  • 7 Tizard, Sir Henry Thoms

    SUBJECT AREA: Weapons and armour
    [br]
    b. 23 August 1885 Gillingham, Kent, England
    d. 9 October 1959 Fareham, Hampshire, England
    [br]
    English scientist and administrator who made many contributions to military technology.
    [br]
    Educated at Westminster College, in 1904 Tizard went to Magdalen College, Oxford, gaining Firsts in mathematics and chemistry. After a period of time in Berlin with Nernst, he joined the Royal Institution in 1909 to study the colour changes of indicators. From 1911 until 1914 he was a tutorial Fellow of Oriel College, Oxford, but with the outbreak of the First World War he joined first the Royal Garrison Artillery, then, in 1915, the newly formed Royal Flying Corps, to work on the development of bomb-sights. Successively in charge of testing aircraft, a lieutenant-colonel in the Ministry of Munitions and Assistant Controller of Research and Experiments for the Royal Air Force, he returned to Oxford in 1919 and the following year became Reader in Chemical Thermodynamics; at this stage he developed the use of toluene as an air-craft-fuel additive.
    In 1922 he was appointed an assistant secretary at the government Department of Industrial and Scientific Research, becoming Principal Assistant Secretary in 1922 and its Permanent Director in 1927; during this time he was also a member of the Aeronautical Research Committee, being Chairman of the latter in 1933–43. From 1929 to 1942 he was Rector of Imperial College. In 1932 he was also appointed Chairman of a committee set up to investigate possible national air-defence systems, and it was largely due to his efforts that the radar proposals of Watson-Watt were taken up and an effective system made operational before the outbreak of the Second World War. He was also involved in various other government activities aimed at applying technology to the war effort, including the dam-buster and atomic bombs.
    President of Magdalen College in 1942–7, he then returned again to Whitehall, serving as Chairman of the Advisory Council on Scientific Policy and of the Defence Research Policy Committee. Finally, in 1952, he became Pro-Chan-cellor of Southampton University.
    [br]
    Principal Honours and Distinctions
    Air Force Cross 1918. CB 1927. KCB 1937. GCB 1949. American Medal of Merit 1947. FRS 1926. Ten British and Commonwealth University honorary doctorates. Hon. Fellowship of the Royal Aeronautical Society. Royal Society of Arts Gold Medal. Franklin Institute Gold Medal. President, British Association 1948. Trustee of the British Museum 1937–59.
    Bibliography
    1911, The sensitiveness of indicators', British Association Report (describes Tizard's work on colour changes in indicators).
    Further Reading
    KF

    Biographical history of technology > Tizard, Sir Henry Thoms

  • 8 Campbell-Swinton, Alan Archibald

    [br]
    b. 18 October 1863 Kimmerghame, Berwickshire, Scotland
    d. 19 February 1930 London, England
    [br]
    Scottish electrical engineer who correctly predicted the development of electronic television.
    [br]
    After a time at Cargilfield Trinity School, Campbell-Swinton went to Fettes College in Edinburgh from 1878 to 1881 and then spent a year abroad in France. From 1882 until 1887 he was employed at Sir W.G.Armstrong's works in Elswick, Newcastle, following which he set up his own electrical contracting business in London. This he gave up in 1904 to become a consultant. Subsequently he was an engineer with many industrial companies, including the W.T.Henley Telegraph Works Company, Parson Marine Steam Turbine Company and Crompton Parkinson Ltd, of which he became a director. During this time he was involved in electrical and scientific research, being particularly associated with the development of the Parson turbine.
    In 1903 he tried to realize distant electric vision by using a Braun oscilloscope tube for the. image display, a second tube being modified to form a synchronously scanned camera, by replacing the fluorescent display screen with a photoconductive target. Although this first attempt at what was, in fact, a vidicon camera proved unsuccessful, he was clearly on the right lines and in 1908 he wrote a letter to Nature with a fairly accurate description of the principles of an all-electronic television system using magnetically deflected cathode ray tubes at the camera and receiver, with the camera target consisting of a mosaic of photoconductive elements that were scanned and discharged line by line by an electron beam. He expanded on his ideas in a lecture to the Roentgen Society, London, in 1911, but it was over twenty years before the required technology had advanced sufficiently for Shoenberg's team at EMI to produce a working system.
    [br]
    Principal Honours and Distinctions
    FRS (Member of Council 1927 and 1929). Freeman of the City of London. Liveryman of Goldsmiths' Company. First President, Wireless Society 1920–1. Vice-President, Royal Society of Arts, and Chairman of Council 1917–19,1920–2. Chairman, British Scientific Research Association. Vice-President, British Photographic Research Association. Member of the Broadcasting Board 1924. Vice-President, Roentgen Society 1911–12. Vice-President, Institution of Electrical Engineers 1921–5. President, Radio Society of Great Britain 1913–21. Manager, Royal Institution 1912–15.
    Bibliography
    1908, Nature 78:151; 1912, Journal of the Roentgen Society 8:1 (both describe his original ideas for electronic television).
    1924, "The possibilities of television", Wireless World 14:51 (gives a detailed description of his proposals, including the use of a threestage valve video amplifier).
    1926, Nature 118:590 (describes his early experiments of 1903).
    Further Reading
    The Proceedings of the International Conference on the History of Television. From Early Days to the Present, November 1986, Institution of Electrical Engineers Publication No. 271 (a report of some of the early developments in television). A.A.Campbell-Swinton FRS 1863–1930, Royal Television Society Monograph, 1982, London (a biography).
    KF

    Biographical history of technology > Campbell-Swinton, Alan Archibald

  • 9 Colpitts, Edwin Henry

    [br]
    b. 9 January 1872 Pointe de Bute, Canada
    d. 6 March 1949 Orange, New Jersey, USA
    [br]
    Canadian physicist and electrical engineer responsible for important developments in electronic-circuit technology.
    [br]
    Colpitts obtained Bachelor's degrees at Mount Allison University, Sackville, New Brunswick, and Harvard in 1894 and 1896, respectively, followed by a Master's degree at Harvard in 1897. After two years as assistant to the professor of physics there, he joined the American Bell Telephone Company. When the Bell Company was reorganized in 1907, he moved to the Western Electric branch of the company in New York as Head of the Physical Laboratories. In 1911 he became a director of the Research Laboratories, and in 1917 he became Assistant Chief Engineer of the company. During this time he invented both the push-pull amplifier and the Colpitts oscillator, both major developments in communications. In 1917, during the First World War, he spent some time in France helping to set up the US Signal Corps Research Laboratories. Afterwards he continued to do much, both technically and as a manager, to place telephone communications on a firm scientific basis, retiring as Vice-President of the Bell Telephone Laboratories in 1937. With the outbreak of the Second World War in 1941 he was recalled from retirement and appointed Director of the Engineering Foundation to work on submarine warfare techniques, particularly echo-ranging.
    [br]
    Principal Honours and Distinctions
    Order of the Rising Sun, Japan, 1938. US Medal of Merit 1948.
    Bibliography
    1919, with E.B.Craft, "Radio telephony", Proceedings of the American Institution of Electrical Engineers 38:337.
    1921, with O.B.Blackwell, "Carrier current telephony and telegraphy", American Institute of Electrical Engineers Transactions 40:205.
    11 September 1915, US reissue patent no. 15,538 (control device for radio signalling).
    28 August 1922, US patent no. 1,479,638 (multiple signal reception).
    Further Reading
    M.D.Fagen, 1975, A History of Engineering \& Science in the Bell System, Vol. 1, Bell Laboratories.
    KF

    Biographical history of technology > Colpitts, Edwin Henry

  • 10 Hofmann, August Wilhelm von

    SUBJECT AREA: Chemical technology
    [br]
    b. 8 April 1818 Giessen, Germany
    d. 2 May 1892 Berlin, Germany
    [br]
    German organic chemist.
    [br]
    The son of an architect, Hofmann began studying law and languages but was increasingly drawn to chemistry, attracted by Liebig's teaching at Giessen. In 1841 Hofmann took his doctorate with a study of coal tar. He became Privatdozent at Bonn University in 1845, but later that year he was persuaded to take up the post of first Director of the Royal College of Chemistry in London, after tenure was guaranteed as a result of Prince Albert's influence. He remained there for twenty years until he was offered professorships in chemistry at Bonn and Berlin. He accepted the latter. Hofmann continued the method of teaching chemistry, based on laboratory instruction, developed by Liebig at Giessen, and extended it to England and Berlin. A steady stream of well-trained chemists issued forth from Hofmann's tuition, concerning themselves especially with experimental organic chemistry and the industrial applications of chemistry. In 1848 one of his students, C.B. Mansfield, devised the method of fractional distillation of coal tar, to separate pure benzene, xylene and toluene, thus laying the foundations of the coal-tar industry. In 1856 another student, W.H. Perkin, prepared the first synthetic dyestuff, aniline purple, heralding the great dyestuffs industry, in which several other of his students distinguished themselves. Although keenly interested in the chemistry of dyestuffs, Hofmann did not pursue their large-scale preparation, but he stressed the importance of scientific research for success on a commercial scale. Hofmann's stimulus in this direction flagged after his return to Germany, and this was a factor in the failure of British industry to follow up their initial advantage and allow it to pass to Germany. In 1862 Hofmann prepared a dye from a derivative of triphenylmethane, which he called rosaniline. From this he derived a series of beautiful colours, ranging from blue to violet, which he patented as "Hofmann's violets" the following year.
    [br]
    Principal Honours and Distinctions
    Ennobled 1888.
    Further Reading
    J.Volhard and E.Fischer, 1902, August Wilhelm von Hofmann, ein Lebensbild, Berlin (the basic biography).
    K.M.Hammond, 1967, bibliography, unpublished, (Diploma in Librarianship, London University (lists 373 items; deposited in University College, London)).
    LRD

    Biographical history of technology > Hofmann, August Wilhelm von

  • 11 Watson-Watt, Sir Robert Alexander

    [br]
    b. 13 April 1892 Brechin, Angus, Scotland
    d. 6 December 1973 Inverness, Scotland
    [br]
    Scottish engineer and scientific adviser known for his work on radar.
    [br]
    Following education at Brechin High School, Watson-Watt entered University College, Dundee (then a part of the University of St Andrews), obtaining a BSc in engineering in 1912. From 1912 until 1921 he was Assistant to the Professor of Natural Philosophy at St Andrews, but during the First World War he also held various posts in the Meteorological Office. During. this time, in 1916 he proposed the use of cathode ray oscillographs for radio-direction-finding displays. He joined the newly formed Radio Research Station at Slough when it was opened in 1924, and 3 years later, when it amalgamated with the Radio Section of the National Physical Laboratory, he became Superintendent at Slough. At this time he proposed the name "ionosphere" for the ionized layer in the upper atmosphere. With E.V. Appleton and J.F.Herd he developed the "squegger" hard-valve transformer-coupled timebase and with the latter devised a direction-finding radio-goniometer.
    In 1933 he was asked to investigate possible aircraft counter-measures. He soon showed that it was impossible to make the wished-for radio "death-ray", but had the idea of using the detection of reflected radio-waves as a means of monitoring the approach of enemy aircraft. With six assistants he developed this idea and constructed an experimental system of radar (RAdio Detection And Ranging) in which arrays of aerials were used to detect the reflected signals and deduce the bearing and height. To realize a practical system, in September 1936 he was appointed Director of the Bawdsey Research Station near Felixstowe and carried out operational studies of radar. The result was that within two years the East Coast of the British Isles was equipped with a network of radar transmitters and receivers working in the 7–14 metre band—the so-called "chain-home" system—which did so much to assist the efficient deployment of RAF Fighter Command against German bombing raids on Britain in the early years of the Second World War.
    In 1938 he moved to the Air Ministry as Director of Communications Development, becoming Scientific Adviser to the Air Ministry and Ministry of Aircraft Production in 1940, then Deputy Chairman of the War Cabinet Radio Board in 1943. After the war he set up Sir Robert Watson-Watt \& Partners, an industrial consultant firm. He then spent some years in relative retirement in Canada, but returned to Scotland before his death.
    [br]
    Principal Honours and Distinctions
    Knighted 1942. CBE 1941. FRS 1941. US Medal of Merit 1946. Royal Society Hughes Medal 1948. Franklin Institute Elliot Cresson Medal 1957. LLD St Andrews 1943. At various times: President, Royal Meteorological Society, Institute of Navigation and Institute of Professional Civil Servants; Vice-President, American Institute of Radio Engineers.
    Bibliography
    1923, with E.V.Appleton \& J.F.Herd, British patent no. 235,254 (for the "squegger"). 1926, with J.F.Herd, "An instantaneous direction reading radio goniometer", Journal of
    the Institution of Electrical Engineers 64:611.
    1933, The Cathode Ray Oscillograph in Radio Research.
    1935, Through the Weather Hours (autobiography).
    1936, "Polarisation errors in direction finders", Wireless Engineer 13:3. 1958, Three Steps to Victory.
    1959, The Pulse of Radar.
    1961, Man's Means to his End.
    Further Reading
    S.S.Swords, 1986, Technical History of the Beginnings of Radar, Stevenage: Peter Peregrinus.
    KF

    Biographical history of technology > Watson-Watt, Sir Robert Alexander

  • 12 научный руководитель

    3) Mathematics: advisor
    5) Psychology: tutor
    6) Astronautics: director of sciences
    7) Education: Academic Advisor, faculty mentor, scholarly adviser, thesis supervisor (аспиранта, соискателя ученой степени), scientific adviser (аспиранта, студента - из Lingvo), scientific tutor (аспирантура), research adviser, (аспиранта) Ph.D. thesis mentor
    9) Chemical weapons: principal investigator
    10) Makarov: adviser

    Универсальный русско-английский словарь > научный руководитель

  • 13 Townes, Charles Hard

    [br]
    b. 28 July 1915 Greenville, South Carolina, USA
    [br]
    American physicist who developed the maser and contributed to the development of the laser.
    [br]
    Charles H.Townes entered Furman University, Greenville, at the early age of 16 and in 1935 obtained a BA in modern languages and a BS in physics. After a year of postgraduate study at Duke University, he received a master's degree in physics in 1936. He then went on to the California Institute of Technology, where he obtained a PhD in 1939. From 1939 to 1947 he worked at the Bell Telephone Laboratories, mainly on airborne radar, although he also did some work on radio astronomy. In 1948 he joined Columbia University as Associate Professor of Physics and in 1950 was appointed a full professor. He was Director of the University's Radiation Laboratory from 1950 to 1952, and from 1952 to 1955 he was Chairman of the Physics Department.
    To meet the need for an oscillator generating very short wavelength electromagnetic radiation, Townes in 1951 realized that use could be made of the different natural energy levels of atoms and molecules. The practical application of this idea was achieved in his laboratory in 1953 using ammonia gas to make the device known as a maser (an acronym of microwave amplification by stimulated emission of radiation). The maser was developed in the next few years and in 1958, in a joint paper with his brother-in-law Arthur L. Schawlow, Townes suggested the possibility of a further development into optical frequencies or an optical maser, later known as a laser (an acronym of light amplification by stimulated emission of radiation). Two years later the first such device was made by Theodore H. Maiman.
    In 1959 Townes was given leave from Columbia University to serve as Vice-President and Director of Research at the Institute for Defense Analyses until 1961. He was then appointed Provost and Professor of Physics at the Massachusetts Institute of Technology. In 1967 he became University Professor of Physics at the University of California, where he has extended his research interests in the field of microwave and infra-red astronomy. He is a member of the National Academy of Sciences, the Institute of Electrical and Electronics Engineers and the American Astronomical Society.
    [br]
    Principal Honours and Distinctions
    Nobel Prize for Physics 1964. Foreign Member, Royal Society of London. President, American Physical Society 1967. Townes has received many awards from American and other scientific societies and institutions and honorary degrees from more than twenty universities.
    Bibliography
    Townes is the author of many scientific papers and, with Arthur L.Schawlow, of
    Microwave Spectroscopy (1955).
    1980, entry, McGraw-Hill Modern Scientists and Engineers, Part 3, New York, pp. 227– 8 (autobiography).
    1991, entry, The Nobel Century, London, p. 106 (autobiography).
    Further Reading
    T.Wasson (ed.), 1987, Nobel Prize Winners, New York, pp. 1,071–3 (contains a short biography).
    RTS

    Biographical history of technology > Townes, Charles Hard

  • 14 Cousteau, Jacques-Yves

    SUBJECT AREA: Ports and shipping
    [br]
    b. 11 June 1910 Saint-André-de-Cubzac, France
    [br]
    French marine explorer who invented the aqualung.
    [br]
    He was the son of a country lawyer who became legal advisor and travelling companion to certain rich Americans. At an early age Cousteau acquired a love of travel, of the sea and of cinematography: he made his first film at the age of 13. After an interrupted education he nevertheless passed the difficult entrance examination to the Ecole Navale in Brest, but his naval career was cut short in 1936 by injuries received in a serious motor accident. For his long recuperation he was drafted to Toulon. There he met Philippe Tailliez, a fellow naval officer, and Frédéric Dumas, a champion spearfisher, with whom he formed a long association and began to develop his underwater swimming and photography. He apparently took little part in the Second World War, but under cover he applied his photographic skills to espionage, for which he was awarded the Légion d'honneur after the war.
    Cousteau sought greater freedom of movement underwater and, with Emile Gagnan, who worked in the laboratory of Air Liquide, he began experimenting to improve portable underwater breathing apparatus. As a result, in 1943 they invented the aqualung. Its simple design and robust construction provided a reliable and low-cost unit and revolutionized scientific and recreational diving. Gagnan shunned publicity, but Cousteau revelled in the new freedom to explore and photograph underwater and exploited the publicity potential to the full.
    The Undersea Research Group was set up by the French Navy in 1944 and, based in Toulon, it provided Cousteau with the Opportunity to develop underwater exploration and filming techniques and equipment. Its first aims were minesweeping and exploration, but in 1948 Cousteau pioneered an extension to marine archaeology. In 1950 he raised the funds to acquire a surplus US-built minesweeper, which he fitted out to further his quest for exploration and adventure and named Calypso. Cousteau also sought and achieved public acclaim with the publication in 1953 of The Silent World, an account of his submarine observations, illustrated by his own brilliant photography. The book was an immediate success and was translated into twenty-two languages. In 1955 Calypso sailed through the Red Sea and the western Indian Ocean, and the outcome was a film bearing the same title as the book: it won an Oscar and the Palme d'Or at the Cannes film festival. This was his favoured medium for the expression of his ideas and observations, and a stream of films on the same theme kept his name before the public.
    Cousteau's fame earned him appointment by Prince Rainier as Director of the Oceanographie Institute in Monaco in 1957, a post he held until 1988. With its museum and research centre, it offered Cousteau a useful base for his worldwide activities.
    In the 1980s Cousteau turned again to technological development. Like others before him, he was concerned to reduce ships' fuel consumption by harnessing wind power. True to form, he raised grants from various sources to fund research and enlisted technical help, namely Lucien Malavard, Professor of Aerodynamics at the Sorbonne. Malavard designed a 44 ft (13.4 m) high non-rotating cylinder, which was fitted onto a catamaran hull, christened Moulin à vent. It was intended that its maiden Atlantic crossing in 1983 should herald a new age in ship propulsion, with large royalties to Cousteau. Unfortunately the vessel was damaged in a storm and limped to the USA under diesel power. A more robust vessel, the Alcyone, was fitted with two "Turbosails" in 1985 and proved successful, with a 40 per cent reduction in fuel consumption. However, oil prices fell, removing the incentive to fit the new device; the lucrative sales did not materialize and Alcyone remained the only vessel with Turbosails, sharing with Calypso Cousteau's voyages of adventure and exploration. In September 1995, Cousteau was among the critics of the decision by the French President Jacques Chirac to resume testing of nuclear explosive devices under the Mururoa atoll in the South Pacific.
    [br]
    Principal Honours and Distinctions
    Légion d'honneur. Croix de Guerre with Palm. Officier du Mérite Maritime and numerous scientific and artistic awards listed in such directories as Who's Who.
    Bibliography
    Further Reading
    R.Munson, 1991, Cousteau, the Captain and His World, London: Robert Hale (published in the USA 1989).
    LRD

    Biographical history of technology > Cousteau, Jacques-Yves

  • 15 Williams, Sir Frederic Calland

    [br]
    b. 26 June 1911 Stockport, Cheshire, England
    d. 11 August 1977 Prestbury, Cheshire, England
    [br]
    English electrical engineer who invented the Williams storage cathode ray tube, which was extensively used worldwide as a data memory in the first digital computers.
    [br]
    Following education at Stockport Grammar School, Williams entered Manchester University in 1929, gaining his BSc in 1932 and MSc in 1933. After a short time as a college apprentice with Metropolitan Vickers, he went to Magdalen College, Oxford, to study for a DPhil, which he was awarded in 1936. He returned to Manchester University that year as an assistant lecturer, gaining his DSc in 1939. Following the outbreak of the Second World War he worked for the Scientific Civil Service, initially at the Bawdsey Research Station and then at the Telecommunications Research Establishment at Malvern, Worcestershire. There he was involved in research on non-incandescent amplifiers and diode rectifiers and the development of the first practical radar system capable of identifying friendly aircraft. Later in the war, he devised an automatic radar system suitable for use by fighter aircraft.
    After the war he resumed his academic career at Manchester, becoming Professor of Electrical Engineering and Director of the University Electrotechnical Laboratory in 1946. In the same year he succeeded in developing a data-memory device based on the cathode ray tube, in which the information was stored and read by electron-beam scanning of a charge-retaining target. The Williams storage tube, as it became known, not only found obvious later use as a means of storing single-frame, still television images but proved to be a vital component of the pioneering Manchester University MkI digital computer. Because it enabled both data and program instructions to be stored in the computer, it was soon used worldwide in the development of the early stored-program computers.
    [br]
    Principal Honours and Distinctions
    Knighted 1976. OBE 1945. CBE 1961. FRS 1950. Hon. DSc Durham 1964, Sussex 1971, Wales 1971. First Royal Society of Arts Benjamin Franklin Medal 1957. City of Philadelphia John Scott Award 1960. Royal Society Hughes Medal 1963. Institution of Electrical Engineers Faraday Medal 1972. Institute of Electrical and Electronics Engineers Pioneer Award 1973.
    Bibliography
    Williams contributed papers to many scientific journals, including Proceedings of the Royal Society, Proceedings of the Cambridge Philosophical Society, Journal of the Institution of Electrical Engineers, Proceedings of the Institution of Mechanical Engineers, Wireless Engineer, Post Office Electrical Engineers' Journal. Note especially: 1948, with J.Kilburn, "Electronic digital computers", Nature 162:487; 1949, with J.Kilburn, "A storage system for use with binary digital computing machines", Proceedings of the Institution of Electrical Engineers 96:81; 1975, "Early computers at Manchester University", Radio \& Electronic Engineer 45:327. Williams also collaborated in the writing of vols 19 and 20 of the MIT Radiation
    Laboratory Series.
    Further Reading
    B.Randell, 1973, The Origins of Digital Computers, Berlin: Springer-Verlag. M.R.Williams, 1985, A History of Computing Technology, London: Prentice-Hall. See also: Stibitz, George R.; Strachey, Christopher.
    KF

    Biographical history of technology > Williams, Sir Frederic Calland

  • 16 Arsonval, Jacques Arsène d'

    SUBJECT AREA: Medical technology
    [br]
    b. 8 June 1851 Boric, France
    d. 31 December 1940 Boric, France
    [br]
    French physician and physicist noted for his invention of the reflecting galvanometer and for contributions to electrotherapy.
    [br]
    After studies at colleges in Limoges and later in Paris, Arsonval became a doctor of medicine in 1877. In 1882 the Collège de France established a laboratory of biophysics with Arsonval as Director, and he was Professor from 1894.
    His most outstanding scientific contributions were in the field of biological applications of electricity. His interest in muscle currents led to a series of inventions to assist in research, including the moving-coil galvanometer. In 1881 he made a significant improvement to the galvanometer by reversing the magnetic elements. It had been usual to suspend a compass needle in the centre of a large, stationary coil, but Arsonval's invention was to suspend a small, light coil between the poles of a powerful fixed magnet. This simple arrangement was independent of the earth's magnetic field and insensitive to vibration. A great increase in sensitivity was achieved by attaching a mirror to the coil in order to reflect a spot of light. For bacterial-research purposes he designed the first constant-temperature incubator controlled by electricity. His experiments on the effects of high-frequency, low-voltage alternating currents on animals led to the first high-frequency heat-therapy unit being established in 1892, and later to methods of physiotherapy becoming a professional discipline.
    [br]
    Principal Honours and Distinctions
    Académie des Sciences, Prix Montyon 1882. Chevalier de la Légion d'honneur 1884. Grand Cross 1931.
    Bibliography
    1882, Comptes rendus de l'Académie des Sciences 94:1347–50 (describes the galvanometer).
    1903, Traité de physique biologique, 2 vols, Paris (an account of his technological work).
    Further Reading
    C.C.Gillispie (ed.), 1970, Dictionary of Scientific Biography, Vol. 1, New York, pp. 302–5.
    D.O.Woodbury, 1949, A Measure for Greatness, New York.
    GW

    Biographical history of technology > Arsonval, Jacques Arsène d'

  • 17 Krylov, Alexei Nicolaevitch

    SUBJECT AREA: Ports and shipping
    [br]
    b. 15 August 1863 Visyoger, Siberia
    d. 26 October 1945 Leningrad (now St Petersburg), Russia
    [br]
    Russian academician and naval architect) exponent of a rigorous mathematical approach to the study of ship motions.
    [br]
    After schooling in France and Germany, Krylov returned to St Petersburg (as it then was) and in 1878 entered the Naval College. Upon graduating, he started work with the Naval Hydrographic Department; the combination of his genius and breadth of interest became apparent, and from 1888 until 1890 he undertook simultaneously a two-year university course in mathematics and a naval architecture course at his old college. On completion of his formal studies, Krylov commenced fifty years of service to the academic bodies of St Petersburg, including eight years as Superintendent of the Russian Admiralty Ship Model Experiment Tank. For many years he was Professor of Naval Architecture in the city, reorganizing the methods of teaching of his profession in Russia. It was during this period that he laid the foundations of his remarkable research and published the first of his many books destined to become internationally accepted in the fields of waves, rolling, ship motion and vibration. Practical work was not overlooked: he was responsible for the design of many vessels for the Imperial Russian Navy, including the battleships Sevastopol and Petropavlovsk, and went on, as Director of Naval Construction, to test anti-rolling tanks aboard military vessels in the North Atlantic in 1913. Following the Revolution, Krylov was employed by the Soviet Union to re-establish scientific links with other European countries, and on several occasions he acted as Superintendent in the procurement of important technical material from overseas. In 1919 he was appointed Head of the Marine Academy, and from then on participated in many scientific conferences and commissions, mainly in the shipbuilding field, and served on the Editorial Board of the well-respected Russian periodical Sudostroenie (Shipbuilding). The breadth of his personal research was demonstrated by the notable contributions he made to the Russian development of the gyro compass.
    [br]
    Principal Honours and Distinctions
    Member, Russian Academy of Science 1814. Royal Institution of Naval Architects Gold Medal 1898. State Prize of the Soviet Union (first degree). Stalin Premium for work on compass deviation.
    Bibliography
    Krylov published more than 500 books, papers and articles; these have been collected and published in twelve volumes by the Academy of Sciences of the USSR. 1942, My Memories (autobiography).
    AK / FMW

    Biographical history of technology > Krylov, Alexei Nicolaevitch

  • 18 Garforth, William Edward

    [br]
    b. 1845 Dukinfield, Cheshire, England
    d. 1 October 1921 Pontefract, Yorkshire, England
    [br]
    English colliery manager, pioneer in machine-holing and the safety of mines.
    [br]
    After Menzies conceived his idea of breaking off coal with machines in 1761, many inventors subsequently followed his proposals through into the practice of underground working. More than one century later, Garforth became one of the principal pioneers of machine-holing combined with the longwall method of working in order to reduce production costs and increase the yield of coal. Having been appointed agent to Pope \& Pearson's Collieries, West Yorkshire, in 1879, of which company he later became Managing Director and Chairman, he gathered a great deal of experience with different methods of cutting coal. The first disc machine was exhibited in London as early as 1851, and ten years later a pick machine was invented. In 1893 he introduced an improved type of deep undercutting machine, his "diamond" disc coal-cutter, driven by compressed air, which also became popular on the European continent.
    Besides the considerable economic advantages it created, the use of machinery for mining coal increased the safety of working in hard and thin seams. The improvement of safety in mining technology was always his primary concern, and as a result of his inventions and his many publications he became the leading figure in the British coal mining industry at the beginning of the twentieth century; safety lamps still carry his name. In 1885 he invented a firedamp detector, and following a severe explosion in 1886 he concentrated on coal-dust experiments. From the information he obtained of the effect of stone-dust on a coal-dust explosion he proposed the stone-dust remedy to prevent explosions of coal-dust. As a result of discussions which lasted for decades and after he had been entrusted with the job of conducting the British coal-dust experiments, in 1921 an Act made it compulsory in all mines which were not naturally wet throughout to treat all roads with incombustible dust so as to ensure that the dust always consisted of a mixture containing not more than 50 per cent combustible matter. In 1901 Garforth erected a surface gallery which represented the damaged roadways of a mine and could be filled with noxious fumes to test self-contained breathing apparata. This gallery formed the model from which all the rescue-stations existing nowadays have been developed.
    [br]
    Principal Honours and Distinctions
    Knighted 1914. LLD Universities of Birmingham and Leeds 1912. President, Midland Institute 1892–4. President, The Institution of Mining Engineers 1911–14. President, Mining Association of Great Britain 1907–8. Chairman, Standing Committee on Mining, Advisory Council for Scientific and Industrial Research. Fellow of the Geological Society of London. North of England Institute of Mining and Mechanical Engineers Greenwell Silver Medal 1907. Royal Society of Arts Fothergill Gold Medal 1910. Medal of the Institution of Mining Engineers 1914.
    Bibliography
    1901–2, "The application of coal-cutting machines to deep mining", Transactions of the Federated Institute of Mining Engineers 23: 312–45.
    1905–6, "A new apparatus for rescue-work in mines", Transactions of the Institution of Mining Engineers 31:625–57.
    1902, "British Coal-dust Experiments". Paper communicated to the International Congress on Mining, Metallurgy, Applied Mechanics and Practical Geology, Dusseldorf.
    Further Reading
    Garforth's name is frequently mentioned in connection with coal-holing, but his outstanding achievements in improving safety in mines are only described in W.D.Lloyd, 1921, "Memoir", Transactions of the Institution of Mining Engineers 62:203–5.
    WK

    Biographical history of technology > Garforth, William Edward

  • 19 Lippman, Gabriel

    [br]
    b. 16 August 1845 Hallerick, Luxembourg
    d. 14 July 1921 at sea, in the North Atlantic
    [br]
    French physicist who developed interference colour photography.
    [br]
    Born of French parents, Lippman's work began with a distinguished career in classics, philosophy, mathematics and physics at the Ecole Normale in Luxembourg. After further studies in physics at Heidelberg University, he returned to France and the Sorbonne, where he was in 1886 appointed Director of Physics. He was a leading pioneer in France of research into electricity, optics, heat and other branches of physics.
    In 1886 he conceived the idea of recording the existence of standing waves in light when it is reflected back on itself, by photographing the colours so produced. This required the production of a photographic emulsion that was effectively grainless: the individual silver halide crystals had to be smaller than the shortest wavelength of light to be recorded. Lippman succeeded in this and in 1891 demonstrated his process. A glass plate was coated with a grainless emulsion and held in a special plate-holder, glass towards the lens. The back of the holder was filled with mercury, which provided a perfect reflector when in contact with the emulsion. The standing waves produced during the exposure formed laminae in the emulsion, with the number of laminae being determined by the wavelength of the incoming light at each point on the image. When the processed plate was viewed under the correct lighting conditions, a theoretically exact reproduction of the colours of the original subject could be seen. However, the Lippman process remained a beautiful scientific demonstration only, since the ultra-fine-grain emulsion was very slow, requiring exposure times of over 10,000 times that of conventional negative material. Any method of increasing the speed of the emulsion also increased the grain size and destroyed the conditions required for the process to work.
    [br]
    Principal Honours and Distinctions
    Royal Photographic Society Progress Medal 1897. Nobel Prize (for his work in interference colour photography) 1908.
    Further Reading
    J.S.Friedman, 1944, History of Colour Photography, Boston.
    Brian Coe, 1978, Colour Photography: The First Hundred Years, London. Gert Koshofer, 1981, Farbfotografie, Vol. I, Munich.
    BC

    Biographical history of technology > Lippman, Gabriel

См. также в других словарях:

  • Natural scientific research in Canada — This article outlines the history of natural scientific research in Canada, including mathematics, physics, astronomy, space science, geology, oceanography, chemistry, biology, medical research and psychology. The social sciences are not treated… …   Wikipedia

  • Director of Central Intelligence — The Office of United States Director of Central Intelligence (DCI) was the head of the United States Central Intelligence Agency, the principal intelligence advisor to the President and the National Security Council, and the coordinator of… …   Wikipedia

  • Scientific plagiarism in India — India does not have a statutory body to deal with scientific misconduct in academia, like the Office of Research Integrity in the USA and hence cases of plagiarism are often dealt in ad hoc fashion with different routes being followed in… …   Wikipedia

  • Morgridge Institute for Research — The Morgridge Institute for Research is a private, nonprofit biomedical research institute in Madison, Wis., affiliated with the University of Wisconsin–Madison. Research in disciplines including regenerative biology, virology, medical devices,… …   Wikipedia

  • Modern Art Research Institute of Ukrainian Academy of Arts — Modern Art Research Institute Modern Art Research Institute of Ukrainian Academy of Arts (Ukrainian: Інститут Проблем Cучасного Mистецтва України) is a unique institute in Ukraine that exercises the fundamental scientific researches in the field… …   Wikipedia

  • U.S. Arctic Research Commission — The United States Arctic Research Commission is a United States federal agency. It was established by the Arctic Research and Policy Act of 1984 (as amended, Public Law 101 609).DutiesThe Commission’s principal duties are: #to establish the… …   Wikipedia

  • National Association for Research & Therapy of Homosexuality — The National Association for Research Therapy of Homosexuality (NARTH) is a non profit organization that offers reparative therapy and other regimens that purport to change the sexual orientation of individuals who experience unwanted same sex… …   Wikipedia

  • National Scientific and Technical Research Council — Consejo Nacional de Investigaciones Científicas y Técnicas Established 1958 Location Buenos Aires, Argentina Budget 2011 US$400 million[1] Address Sarmi …   Wikipedia

  • Assistant Secretary of Defense for Research and Engineering — The Assistant Secretary of Defense for Research and Engineering ASD(R E) is a senior official of the United States Department of Defense. The ASD(R E) and the office s/he heads are charged with the development and oversight of DoD technology… …   Wikipedia

  • United States Army Research Laboratory — Infobox Military Unit unit name= Army Research Laboratory caption= Logo of the ARL dates= October 1992 Present country= United States branch= Army type= Research and development size= command structure= garrison= commander1= John M. Miller… …   Wikipedia

  • List of scientists opposing the mainstream scientific assessment of global warming — This is an incomplete list, which may never be able to satisfy particular standards for completeness. You can help by expanding it with reliably sourced entries …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»